Theoretical studies of the spin Hamiltonian parameters for the two tetragonal Cu centers in the calcined catalysts CuO–ZnO

نویسندگان

  • H. M. Zhang
  • S. Y. Wu
  • Z. H. Zhang
چکیده

The spin Hamiltonian parameters for the two Cu centers A1 and A2 in the calcined catalysts CuO–ZnO are theoretically investigated using the high order perturbation formulas of these parameters for a 3d ion in tetragonally elongated octahedra. In the above formulas, the tetragonal field parameters Ds and Dt are determined from the superposition model, by considering the relative axial elongation of the oxygen octahedron around the Cu due to the Jahn-Teller effect. Based on the calculations, the relative elongation ratios of about 5% and 3% are obtained for the tetragonal Cu centers A1 and A2, respectively. The theoretical spin Hamiltonian parameters are in good agreement with the observed values for both systems. The larger axial elongation in center A1 is ascribed to the more significant low symmetrical (tetragonal) distortion of the Jahn-Teller effect. The local structures characterized by the above axial elongations are discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Physico-Chemical and Catalytic Properties of Mesoporous CuO-ZrO2 Catalysts

Mesoporous CuO-ZrO2 catalysts were prepared and calcined at 500 ̋C. The performance of the synthesized catalysts for benzylation of benzene using benzyl chloride was studied. The bare support (macroporous ZrO2) offered 45% benzyl chloride conversion after reaction time of 10 h at 75 ̋C. Significant increase in benzyl chloride conversion (98%) was observed after CuO loading (10 wt. %) on porous ...

متن کامل

Activity of Cu-Co-M (M= Ce, Ni, Au, Mg) catalysts prepared by coprecipitation method, calcined at high temperature for CO oxidation

The present study deals with analysis of the activity of catalysts prepared by addition of different metals to Copper and Cobalt based catalysts for CO oxidation and the variation in activity caused by changes in composition. A series of catalysts were prepared with Cu:Co molar ratio 1:4 and a third metal (M= Ce, Ni, Au, Mg) was added in three different quantities. Compositions were prepared by...

متن کامل

Activity of Cu-Co-M (M= Ce, Ni, Au, Mg) catalysts prepared by coprecipitation method, calcined at high temperature for CO oxidation

The present study deals with analysis of the activity of catalysts prepared by addition of different metals to Copper and Cobalt based catalysts for CO oxidation and the variation in activity caused by changes in composition. A series of catalysts were prepared with Cu:Co molar ratio 1:4 and a third metal (M= Ce, Ni, Au, Mg) was added in three different quantities. Compositions were prepared by...

متن کامل

Methanol steam reforming; Effects of various metal oxides on the properties of a Cu-based catalyst

Ternary Cu/ZnO/metal oxide catalysts are prepared through the co-precipitation method under strict control of parameters like pH, calcination conditions, and precipitation temperature in a systematic manner. The metal oxides applied in this study consist of Al2O3, ZrO2, La2O3 and Ce2O3. The distinction of this work in comparison with similar research is a comprehensive investigatation of the ca...

متن کامل

Two component reaction for the synthesis of Quinolines in the presence of γ-Al2O3 and Cu/ZnO nanoparticles

Two-component reaction of 2-aminobenzophenones with acetylenic esters in the presence of γ-Al2O3 and Cu/ZnO as suitable heterogeneous catalysts has been studied. Nano γ-Al2O3 and Cu/ZnO showed high activities when used as surface catalysts for the synthesis of quinoline derivatives. After completion of the reaction, the catalyst was ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010